Credit rating prediction using Ant Colony Optimization

نویسندگان

  • David Martens
  • Tony Van Gestel
  • Manu De Backer
  • Raf Haesen
  • Jan Vanthienen
  • Bart Baesens
چکیده

The introduction of the Basel II Capital Accord has encouraged financial institutions to build internal rating systems assessing the credit risk of their various credit portfolios. One of the key outputs of an internal rating system is the probability of default (PD), which reflects the likelihood that a counterparty will default on his/her financial obligation. Since the PD modeling problem basically boils down to a discrimination problem (defaulter or not), one may rely on the myriad of classification techniques that have been suggested in the literature. However, since the credit risk models will be subject to supervisory review and evaluation, they must be easy to understand and transparent. Hence, techniques such as neural networks or support vector machines are less suitable due to their black box nature. Building upon previous research, we will use AntMiner+ to build internal rating systems for credit risk. AntMiner+ allows to infer a propositional rule set from a given data set hereby using the principles from Ant Colony Optimization. Experiments will be conducted using various types of credit data sets (retail, smalland medium-sized enterprises (SMEs) and banks). It will be shown that the extracted rule sets are both powerful in terms of discriminatory power, and comprehensibility. Furthermore, a Preprint submitted to Elsevier 29 October 2008 framework will be presented describing how AntMiner+ fits into a global Basel II credit risk management system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A systematic approach for estimation of reservoir rock properties using Ant Colony Optimization

Optimization of reservoir parameters is an important issue in petroleum exploration and production. The Ant Colony Optimization(ACO) is a recent approach to solve discrete and continuous optimization problems. In this paper, the Ant Colony Optimization is usedas an intelligent tool to estimate reservoir rock properties. The methodology is illustrated by using a case study on shear wave velocity...

متن کامل

Hybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran

Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...

متن کامل

Comparative Analysis and Survey of Ant Colony Optimization based Rule Miners

In this research study, we analyze the performance of bio inspired classification approaches by selecting Ant-Miners (Ant-Miner, cAnt_Miner, cAnt_Miner2 and cAnt_MinerPB) for the discovery of classification rules in terms of accuracy, terms per rule, number of rules, running time and model size discovered by the corresponding rule mining algorithm. Classification rule discovery is still a chall...

متن کامل

Dt-bar: a Dynamic Ant Recommender to Balance the Overall Prediction Accuracy for All Users

Ant colony algorithms have become recently popular in solving many optimization problems because of their collaborative decentralized behavior that mimics the behavior of real ants when foraging for food. Recommender systems present an optimization problem in which they aim to accurately predict a user’s rating for an unseen item by trying to find similar users in the network. Trust-based recom...

متن کامل

Electricity Consumption Prediction based on SVR with Ant Colony Optimization

Accurate forecasting of electric load has always been the most important issues in the electricity industry, particularly for developing countries. Due to the various influences, electric load forecasting reveals highly nonlinear characteristics. This paper creates a system for power load forecasting using support vector machine and ant colony optimization. The method of colony optimization is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JORS

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2010